intermediate usage
slug: example-usage-how-to-use-indexThe index step takes a measure's mean value and compares it to level=0 measure.mean.
Input to the index step must always be a cube.
See the index step for more details.
- index:
dataset: salesCube
measure: revenue
metric: mean
indexAgainst: level0
significanceThreshold: 20
includeComposition: true
output: indexedSales
- index:
dataset: salesCube
measure: margin
metric: mean
indexAgainst: parent
significanceThreshold: 15
output: parentIndexed
- index:
dataset: quarterlyCube
measure: revenue
metric: mean
indexAgainst: custom
baselineFilter: {quarter: "Q1-2024"}
indexColumn: vsQ1Index
output: quarterlyIndex
- index:
dataset: salesCube
measure: revenue
metric: mean
output: revenueIndexed
- index:
dataset: revenueIndexed
measure: margin
metric: mean
output: revenueAndMarginIndexed
Result: See which high-volume segments (pareto A) ALSO over-index on efficiency
- pareto:
dataset: salesCube
measure: revenue
metric: sum
level: 2
output: paretoRanked
- index:
dataset: paretoRanked
measure: revenue
metric: mean
indexAgainst: level0
output: paretoWithIndex
title: Index Analysis Step slug: index-step token: [generate with your base62 function] doc_type: step category: analytical_steps difficulty: beginner status: published tags: index,normalization,efficiency,affinity,benchmarking,targeting,over-index,under-index related_docs: ["pareto-step","contribution-step","index-analysis-topic-map"]